AcWing - 滑动窗口(单调队列)

题目链接:https://www.acwing.com/problem/content/description/156/
时/空限制:1s / 64MB

题目描述

给定一个大小为n≤106的数组。

有一个大小为k的滑动窗口,它从数组的最左边移动到最右边。

您只能在窗口中看到k个数字。

每次滑动窗口向右移动一个位置。

以下是一个例子:

该数组为[1 3 -1 -3 5 3 6 7],k为3。

窗口位置 最小值 最大值
[1 3 -1] -3 5 3 6 7 -1 3
1 [3 -1 -3] 5 3 6 7 -3 3
1 3 [-1 -3 5] 3 6 7 -3 5
1 3 -1 [-3 5 3] 6 7 -3 5
1 3 -1 -3 [5 3 6] 7 3 6
1 3 -1 -3 5 [3 6 7] 3 7

您的任务是确定滑动窗口位于每个位置时,窗口中的最大值和最小值。

输入格式

输入包含两行。

第一行包含两个整数n和k,分别代表数组长度和滑动窗口的长度。

第二行有n个整数,代表数组的具体数值。

同行数据之间用空格隔开。

输出格式

输出包含两个。

第一行输出,从左至右,每个位置滑动窗口中的最小值。

第二行输出,从左至右,每个位置滑动窗口中的最大值。

输入样例

8 3
1 3 -1 -3 5 3 6 7

输出样例

-1 -3 -3 -3 3 3
3 3 5 5 6 7

解题思路

题意:给你一个长度为n的序列,长度为k的窗口在上面向右移动,求出每次移动时窗口内数字的最小值和最大值。
思路:维护两个队列,一个是最小值,一个是最大值。以最小值为例,最大值同理。
求最小值:建立一个单调递增队列,元素从左到右依次入队,入队之前必须从队列尾部开始删除那些比当前入队元素大或者相等的元素,直到遇到一个比当前入队元素小的元素,或者队列为空为止。此时队列中剩下的元素严格单调递增,所以队头就是整个队列中的最小值,若此时队头元素不在窗口中,则从队头删除元素,直到队头在窗口中为止。然后把当前元素插入队尾。

Accepted Code:

/* 
 * @Author: lzyws739307453 
 * @Language: C++ 
 */
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 1000005;
struct Queue {
    int data[MAXN];
    int front_, rear;
    Queue() {
        front_ = 0, rear = -1;
    }
    void push(int x) {
        data[++rear] = x;
    }
    void pop_front() {
        front_++;
    }
    void pop_back() {
        rear--;
    }
    int front() {
        return data[front_];
    }
    int back() {
        return data[rear];
    }
    int size() {
        return rear - front_ + 1;
    }
    bool empty() {
        return rear < front_;
    }
}Qmin, Qmax;
int cnt_max = 0, cnt_min = 0;
int spt[MAXN], res_max[MAXN], res_min[MAXN];
int main() {
    int n, m;
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i++)
        scanf("%d", &spt[i]);
    for (int i = 1; i <= n; i++) {
        while (!Qmax.empty() && Qmax.front() + m - 1 < i)
            Qmax.pop_front();
        while (!Qmin.empty() && Qmin.front() + m - 1 < i)
            Qmin.pop_front();
        while (!Qmax.empty() && spt[Qmax.back()] <= spt[i])
            Qmax.pop_back();
        while (!Qmin.empty() && spt[Qmin.back()] >= spt[i])
            Qmin.pop_back();
        Qmax.push(i), Qmin.push(i);
        res_max[++cnt_max] = Qmax.front();
        res_min[++cnt_min] = Qmin.front();
    }
    for (int i = m; i <= n; i++)
        printf("%d%c", spt[res_min[i]], "\n "[i != n]);
    for (int i = m; i <= n; i++)
        printf("%d%c", spt[res_max[i]], "\n "[i != n]);
    return 0;
}
展开阅读全文

Python数据分析与挖掘

01-08
92讲视频课+16大项目实战+源码+¥800元课程礼包+讲师社群1V1答疑+社群闭门分享会=99元   为什么学习数据分析?       人工智能、大数据时代有什么技能是可以运用在各种行业的?数据分析就是。       从海量数据中获得别人看不见的信息,创业者可以通过数据分析来优化产品,营销人员可以通过数据分析改进营销策略,产品经理可以通过数据分析洞察用户习惯,金融从业者可以通过数据分析规避投资风险,程序员可以通过数据分析进一步挖掘出数据价值,它和编程一样,本质上也是一个工具,通过数据来对现实事物进行分析和识别的能力。不管你从事什么行业,掌握了数据分析能力,往往在其岗位上更有竞争力。    本课程共包含五大模块: 一、先导篇: 通过分析数据分析师的一天,让学员了解全面了解成为一个数据分析师的所有必修功法,对数据分析师不在迷惑。   二、基础篇: 围绕Python基础语法介绍、数据预处理、数据可视化以及数据分析与挖掘......这些核心技能模块展开,帮助你快速而全面的掌握和了解成为一个数据分析师的所有必修功法。   三、数据采集篇: 通过网络爬虫实战解决数据分析的必经之路:数据从何来的问题,讲解常见的爬虫套路并利用三大实战帮助学员扎实数据采集能力,避免没有数据可分析的尴尬。   四、分析工具篇: 讲解数据分析避不开的科学计算库Numpy、数据分析工具Pandas及常见可视化工具Matplotlib。   五、算法篇: 算法是数据分析的精华,课程精选10大算法,包括分类、聚类、预测3大类型,每个算法都从原理和案例两个角度学习,让你不仅能用起来,了解原理,还能知道为什么这么做。
©️2020 CSDN 皮肤主题: 代码科技 设计师: Amelia_0503 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值